
Exact evaluation of the Baxter-Bazhanov Green function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 1781

(http://iopscience.iop.org/0305-4470/31/7/012)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 1781–1790. Printed in the UK PII: S0305-4470(98)88969-5
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Abstract. The analytic properties of the lattice Green function

G(t) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

t − cosx − cosy − cosz+ cosx cosy cosz
,

wheret lies in a complex plane which is cut along the real axis from−2 to+2, are investigated.
In particular, it is proved thattG(t) can be written in the product form

tG(t) = (1− ξ2)−
1
4

[
2F1

(
1

8
,

5

8
; 1; ξ2

)]2

,

whereξ = 2/t and2F1(a, b; c; z) denotes a hypergeometric function. This result and the analytic
continuation formulae for the2F1 function are then used to obtain various exact closed-form
expressions for the related functions

GR(s) = Re
[

lim
ε→0+

G(s − iε)
]
,

GI(s) = Im
[

lim
ε→0+

G(s − iε)
]
,

wheres ∈ (−2, 2). It is also shown thatG(t) is a solution of a third-order Fuchsian differential
equation.

1. Introduction

Recently, Baxter and Bazhanov (Glasser, private communication) have shown that the triple
integral

I (t) = 1

π3

∫ π

0

∫ π

0

∫ π

0
ln(t − cosx − cosy − cosz+ cosx cosy cosz) dx dy dz (1.1)

can be evaluated exactly for the special caset = 2. In particular, they found that

I (2) = 8

π
G− 3 ln 2, (1.2)

whereG is the Catalan constant. An alternative more direct derivation of this result has
also been given by Glasser (unpublished work).

Our main aim in this paper is to investigate the analytic properties of the derivative
function

G(t) ≡ I ′(t) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

t − cosx − cosy − cosz+ cosx cosy cosz
. (1.3)

Integral (1.3) defines a single-valued analytic functionG(t) in the complext plane provided
that a cut is made along the real axis from−2 to+2. It is also clear that the functionG(t)
is a form of lattice Green function (see Katsuraet al 1971). A series representation for
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G(t) can be derived by expanding the integrand in (1.3) in inverse powers oft and then
integrating term by term. This procedure gives

G(t) = 1

t

∞∑
k=0

µk

tk
, |t | > 2 (1.4)

where

µk = 1

π3

∫ π

0

∫ π

0

∫ π

0
(cosx + cosy + cosz− cosx cosy cosz)k dx dy dz. (1.5)

From (1.5) one finds thatµ0 = 1, µ2 = 13
8 andµ4 = 2235

512 . It is also readily seen that the
odd coefficients{µ2n+1; n = 0, 1, 2, . . .} are equal to zero.

In many physical applications of Green functions one requires the limiting behaviour
of G(t) as the complex variablet approaches the real axis. It is convenient, therefore, to
introduce the additional definitions

G±(s) ≡ lim
ε→0+

G(s ± iε) ≡ GR(s)∓ iGI(s), (1.6)

where−∞ < s <∞. The imaginary partGI(s) can be used to express the Green function
G(t) in the alternative simplified form (Katsuraet al 1971)

G(t) =
∫ ∞
−∞

ρ(s)

t − s ds, (1.7)

where the weight function

ρ(s) = 1

π
GI(s). (1.8)

It follows from (1.4) and (1.7) that

µk =
∫ ∞
−∞

skρ(s) ds, (1.9)

wherek = 0, 1, 2, . . . .

2. Basic results

We begin by performing the integration over the variablez in (1.3). This procedure gives

G(t) = 1

π2

∫ π

0

dx

sinx

∫ π

0

dy√
(a − cosy)(b − cosy)

, (2.1)

where

a = (t − cosx + 1)/(1+ cosx), (2.2)

b = (t − cosx − 1)/(1− cosx). (2.3)

We now make the substitutionu = cosy in (2.1) and apply the standard result (Byrd and
Friedman 1971, p 107)∫ 1

−1

du√
(a − u)(b − u)(1− u2)

= 2√
(a − 1)(b + 1)

K(k), (2.4)

where

k2 = 2(a − b)
(a − 1)(b + 1)

(2.5)
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andK(k) is a complete elliptic integral of the first kind. Hence, we find that

G(t) = ξ

π2

∫ π

0

1

1− ξ cosx
K(k) dx, (2.6)

where

k2 = 1− 1− ξ2

(1− ξ cosx)2
(2.7)

andξ = 2/t .
In order to evaluate the integral (2.6) we first expand the integrand in powers ofk2

using the hypergeometric series

2

π
K(k) = 2F1

(
1

2
,

1

2
; 1; k2

)
=
∞∑
n=0

( 1
2)

2
n

(1)2n
k2n, |k2| < 1 (2.8)

where (a)n denotes a Pochhammer symbol, and then apply the binomial theorem to the
expression fork2n. This procedure yields

tG(t) =
∞∑

n,m=0

( 1
2)

2
n(−n)m

(1)2n(1)m
(1− ξ2)mJm(ξ), (2.9)

where

Jm(ξ) = 1

π

∫ π

0

dx

(1− ξ cosx)2m+1
. (2.10)

It is known that (Gradshteyn and Ryzhik 1980, p 383)

Jm(ξ) = 1

(1− ξ2)m+
1
2

P2m

(
1√

1− ξ2

)
, (2.11)

wherePν(z) denotes a Legendre polynomial. We can use the standard formula

Pν(z) = 2F1(−ν, ν + 1; 1; 1
2 − 1

2z) (2.12)

to write (2.11) in the form

Jm(ξ) = (1− ξ2)−m−
1
2 2F1(−2m, 2m+ 1; 1;ω), (2.13)

where

ω = 1
2 − 1

2(1− ξ2)−
1
2 . (2.14)

The substitution of formula (2.13) into equation (2.9) gives

tG(t) = (1− ξ2)−
1
2

∞∑
n,m,j=0

( 1
2)

2
n(−n)m(−2m)j (2m+ 1)j

(1)2n(1)m(1)
2
j

ωj , (2.15)

provided that|ω| < 1.
A simplification of the triple series in (2.15) can be achieved by applying the contour

integral representation

(−2m)j (2m+ 1)j = (−1)j
(2j)!

2π i

∫
C1

(1+ z)2m+j
z1+2j

dz (2.16)

to the summation, whereC1 is a closed contour which encloses the originz = 0 with a
winding number+1. (It is also necessary to restrictC1 to lie in az plane which is cut along
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the real axis from−∞ to −1.) After carrying out the summations overm andn it is found
that

tG(t) = (1− ξ2)−
1
2

∞∑
j=0

(
1
2

)
j

(1)j
Qjω

j , (2.17)

where

Qj = (−4)j

2π i

∫
C1

(1+ z)j
z1+2j 2F1

[
1

2
,

1

2
; 1;−z(2+ z)

]
dz. (2.18)

Next we apply the transformation formula (see Erdélyi et al 1953, p 113, equation (30))

2F1

[
1

2
,

1

2
; 1;−z(2+ z)

]
= (1+ z)− 1

2 2F1

[
1

2
,

1

2
; 1;− z2

4(1+ z)
]

(2.19)

to equation (2.18). Hence we obtain

Qj = (−4)j
j∑

m=0

(
1
2

)2

m

(1)2m

(
−1

4

)m
Res(j,m; 0), (2.20)

where Res(j,m; 0) is the residue of the function

f (j,m; z) = z2m−2j−1(1+ z)j−m− 1
2 (2.21)

at the originz = 0. It can be readily shown that

Res(j,m; 0) =
(

1
2

)
j
(−j)m

(1)j
(−j + 1

2

)
m

(−4)m−j . (2.22)

The substitution of formula (2.22) into equation (2.20) then gives

Qj =
(

1
2

)
j

(1)j
3F2

[ −j, 1
2,

1
2;

1
−j + 1

2, 1;

]
, (2.23)

where3F2 denotes a generalized hypergeometric function.
We now apply the special hypergeometric identity (see Slater 1966, p 76)

3F2

[ −j, 1
2,

1
2;

1
−j + 1

2, 1;

]
=
(

1
4

)
j

(
3
4

)
j(

1
2

)2

j

4F3

[ −j, −j, 1
4,

3
4;

1
−j + 1

4, −j + 3
4, 1;

]
(2.24)

to equation (2.23). Hence we obtain

Qj =
(

1
4

)
j

(
3
4

)
j(

1
2

)
j
(1)j

4F3

[ −j, −j, 1
4,

3
4;

1
−j + 1

4, −j + 3
4, 1;

]
. (2.25)

In appendix A we derive result (2.25) by using an alternativemore directprocedure which
does not use identity (2.24). The substitution of (2.25) into (2.17) then gives

tG(t) = (1− ξ2)−
1
2

∞∑
j=0

(
1
4

)
j

(
3
4

)
j

(1)2j
4F3

[ −j, −j, 1
4,

3
4;

1
−j + 1

4, −j + 3
4, 1;

]
ωj , (2.26)

where |ω| < 1. The series in (2.26) can be readily expressed in the simple product form
(see Erd́elyi et al 1953, p 187, equation (14))

tG(t) = (1− ξ2)−
1
2 [2F1(

1
4,

3
4, 1, ω)]2, (2.27)

whereξ = 2/t and the variableω is defined in equation (2.14).
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3. Analytic properties of G(t)

In this section we shall use the basic result (2.27) to investigate the mathematical properties
of G(t).

3.1. Transformation formulae forG(t)

The application of the quadratic transformation formula (Erdélyi et al 1953, p 112,
equation (16))

2F1(
1
8,

5
8; 1; ξ2) = (1− ξ2)−

1
8 2F1[ 1

4,
3
4; 1; 1

2 − 1
2(1− ξ2)−

1
2 ] (3.1)

to equation (2.27) gives

tG(t) = (1− ξ2)−
1
4 [2F1(

1
8,

5
8; 1; ξ2)]2, (3.2)

where ξ = 2/t . This result and the analytic continuation formulae for the2F1

hypergeometric function enable one to calculate the numerical value ofG(t) at any point in
the cutt plane. We can also use the Kummer transformation formula (Erdélyi et al 1953,
p 105, equation (2))

2F1(
1
8,

5
8; 1; ξ2) = (1− ξ2)

1
4 2F1(

3
8,

7
8; 1; ξ2) (3.3)

to write (3.2) in the alternative product form

tG(t) = 2F1(
1
8,

5
8; 1; ξ2) 2F1(

3
8,

7
8; 1; ξ2). (3.4)

The behaviour ofG(t) in the neighbourhood of the singular pointsξ = ±1 can be determined
by applying a standard analytic continuation formula (Erdélyi et al 1953, p 108, equation (1))
to the 2F1 function in (3.2). It is found that

tG(t) = (1− ξ2)−1/4

{
[0( 1

4)]
2

23/4π3/2 2F1

(
1

8
,

5

8
; 3

4
; 1− ξ2

)
−27/4π1/2

[0( 1
4)]

2
(1− ξ2)1/42F1

(
3

8
,

7

8
; 5

4
; 1− ξ2

)}2

, (3.5)

where| arg(1− ξ2)| < π .
Next we apply the further transformation formula (Erdélyi et al 1953, p 112,

equation (16))

2F1(
1
4,

3
4; 1;ω) = (1− ω)−

1
4 2F1[ 1

2,
1
2; 1; 1

2 − 1
2(1− ω)−

1
2 ] (3.6)

to equation (2.27). Hence we find that

tG(t) = (1− ξ2)−
1
4

[
1

2
+ 1

2
(1− ξ2)

1
2

]− 1
2
[

2

π
K(k)

]2

, (3.7)

where

k2 = 1
2 − 1

2(1− ξ2)
1
4

[
1
2 + 1

2(1− ξ2)
1
2

]− 1
2
. (3.8)

It is interesting to note that results similar to (3.7) have also been obtained for the three
cubic lattice Green functions (Watson 1939; Joyce 1971, 1994).

Finally, we can use the identity (Prudnikovet al 1990)[
2F1

(
1

4
,

3

4
; 1;ω

)]2

= 3F2

[ 1
4,

3
4,

1
2;

4ω(1− ω)
1, 1;

]
(3.9)
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to express (2.27) in the generalized hypergeometric form

tG(t) = (1− ξ2)−
1
2 3F2

[ 1
4,

3
4,

1
2; −ξ2/(1− ξ2)

1, 1;

]
, (3.10)

whereξ = 2/t .

3.2. Differential equation forG(t)

We shall now use formula (3.10) to establish a Fuchsian differential equation forG(t). It
can be shown (Erd́elyi et al 1953, p 184, equation (2)) that the generalized hypergeometric
function

y(z) = 3F2

[ 1
4,

3
4,

1
2;

z

1, 1;

]
(3.11)

is a solution of the third-order differential equation

[ϑ3− z(ϑ + 1
4)(ϑ + 3

4)(ϑ + 1
2)]y = 0, (3.12)

whereϑ = z(d/dz). From this result it follows that

32z2(z− 1)
d3y

dz3
− 48z(2− 3z)

d2y

dz2
+ 2(51z− 16)

dy

dz
+ 3y = 0. (3.13)

If we change the independent variable in (3.13) fromz to 4/(4− t2) and the dependent
variable fromy to t [1− (4/t2)]1/2G then we obtain the required differential equation

(t2− 4)2
d3G

dt3
+ 6t (t2− 4)

d2G

dt2
+ (7t2− 13)

dG

dt
+ tG = 0. (3.14)

The RiemannP -symbol (see Ince 1956, pp 370–2) associated with this Fuchsian equation
is

P


−2, +2, ∞;
0, 0, 1; t

− 1
4, − 1

4, 1;
+ 1

4, + 1
4, 1;

 . (3.15)

We see that theP -symbol (3.15) has the correct Fuchsian invariant of 3.

3.3. Properties of the even moments{µ2n; n = 0, 1, 2, . . .}
The substitution of the series (1.4) in the differential equation (3.14) enables one to derive a
recurrence relation for the non-zero moments{µ2n; n = 0, 1, 2, . . .}. In particular, we find
that

8(n+ 1)3µ2n+2− (2n+ 1)(32n2+ 32n+ 13)µ2n + 32n(4n2− 1)µ2n−2 = 0, (3.16)

wheren > 0, with the initial conditionsµ0 = 1 andµ−2 ≡ 0. A closed-form expression for
µ2n can also be obtained by first expanding the right-hand side of equation (3.10) in powers
of ξ2 = 4/t2. A comparison of this expansion with (1.4) then gives the simple formula

µ2n

22n
=
(

1
2

)
n

(1)n
3F2

[−n, 1
4,

3
4;

1
1, 1;

]
. (3.17)

Unsuccessful attempts have been made to establish (3.17) by carrying out adirect evaluation
of the triple integral (1.5).
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Finally, we note that the asymptotic behaviour ofµ2n asn → ∞ can be analysed by
applying the method of Darboux (1878) to the analytic continuation (3.5). It is found that
the asymptotic representation is

µ2n

22n
∼
[
0( 1

4)

π
√

2

]3
1

n3/4

[
1− 1

4n
+ 157

3072n2
− 17

12 288n3
− 136 631

44 040 192n4

− 139 409

176 160 768n5
+ 34 671 611

23 622 320 128n6
+ · · ·

]
− 2[
0
(

1
4

)]3

1

n5/4

[
1− 1

2n
+ 861

5120n2
− 183

10 240n3
− 175 167

10 485 760n4

+ 52 731

20 971 520n5
+ 279 788 819

27 917 287 424n6
+ · · ·

]
, (3.18)

as n → ∞. The numerical evaluation of (3.18) for the particular casen = 25 gives the
approximation

µ50/2
50 ≈ 0.047 388 443 365 1630. . . . (3.19)

This value is in excellent agreement with the exact value

µ50/2
50 = 0.047 388 443 365 1693. . . . (3.20)

4. Formulae for GR(s) and GI (s)

We shall now determine the real partGR(s) and the imaginary partGI(s) of the Green
function G(s − iε) as ε → 0+, where s is a fixed real number in the interval(−2, 2).
(If the real numbers lies in the intervals(−∞,−2) and (2,∞) we can use the relation
GR(s) = G(s), with GI(s) ≡ 0.) In the first stage of the analysis the standard analytic
continuation formula (Erd́elyi et al 1953, p 109, equation (4))

2F1

(
1

8
,

5

8
; 1; ξ2

)
= [0( 1

4)]
2

23/4π3/2
ξ−1/4

2F1

(
1

8
,

1

8
; 3

4
; 1− 1

ξ2

)
−27/4π1/2

[0( 1
4)]

2
ξ−7/4(1− ξ2)1/42F1

(
7

8
,

7

8
; 5

4
; 1− 1

ξ2

)
(4.1)

is applied to equation (3.2), where| arg(ξ2)| < π and ξ = 2/t . It is then possible to
evaluate the limit defined in equation (1.6). Hence, we obtain the formula

GR(s) =
[0( 1

4)]
4

8π3

(
1− s

2

4

)−1/4 [
2F1

(
1

8
,

1

8
; 3

4
; 1− s

2

4

)]2

− s
π

2F1

(
1

8
,

1

8
; 3

4
; 1− s

2

4

)
2F1

(
7

8
,

7

8
; 5

4
; 1− s

2

4

)
+ π

[0( 1
4)]

4
s2

(
1− s

2

4

)1/4 [
2F1

(
7

8
,

7

8
; 5

4
; 1− s

2

4

)]2

, (4.2)

provided that 0< s < 2. When−2 < s < 0 we can calculateGR(s) using (4.2) and the
symmetry relation

GR(−s) = −GR(s). (4.3)
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It is also found that

GI(s) =
[0( 1

4)]
4

8π3

(
1− s

2

4

)−1/4 [
2F1

(
1

8
,

1

8
; 3

4
; 1− s

2

4

)]2

− π

[0( 1
4)]

4
s2

(
1− s

2

4

)1/4 [
2F1

(
7

8
,

7

8
; 5

4
; 1− s

2

4

)]2

, (4.4)

where−2< s < 2. Formulae (4.2) and (4.4) clearly show the singular behaviour ofGR(s)

andGI(s) respectively, ass2→ 4−.
The behaviour ofGR(s) andGI(s) in the neighbourhood ofs = 0 can be investigated

by applying the alternative analytic continuation formula (Erdélyi et al 1953, p 108,
equation (2))

2F1

(
1

8
,

5

8
; 1; ξ2

)
= 0( 1

8)0(
3
8)

(2π)3/2
(−ξ2)−1/8

2F1

(
1

8
,

1

8
; 1

2
; 1

ξ2

)
− 2π

1
2

0( 1
8)0(

3
8)
(−ξ2)−5/8

2F1

(
5

8
,

5

8
; 3

2
; 1

ξ2

)
, (4.5)

where| arg(−ξ2)| < π , to equation (3.2). Hence we find that

GR(s) = s

π23/2

(
1− s

2

4

)−1/4

2F1

(
1

8
,

1

8
; 1

2
; s

2

4

)
2F1

(
5

8
,

5

8
; 3

2
; s

2

4

)
(4.6)

and

GI(s) =
(

1− s
2

4

)−1/4{ [0( 1
8)0(

3
8)]

2

16π3

[
2F1

(
1

8
,

1

8
; 1

2
; s

2

4

)]2

− π

2[0( 1
8)0(

3
8)]

2
s2

[
2F1

(
5

8
,

5

8
; 3

2
; s

2

4

)]2}
, (4.7)

where−2< s < 2. We see from these results that

GI(0) =
[0( 1

8)0(
3
8)]

2

16π3
= 0.642 882 248 294. . . , (4.8)

with GR(0) = 0. Finally, we note thatGR(s), GI(s) and the weight functionρ(s) are all
solutions of the basic differential equation (3.14) witht = s.

5. Concluding remarks

Formulae (4.4) and (4.7) forGI(s) enable one to obtain closed-form expressions for the
weight functionρ(s) in equation (1.9). It is seen, therefore, that our results give an exact
solution of the moment problem (see Shohat and Tamarkin 1943) associated with the set of
moments{µk; k = 0, 1, 2, . . .}. We can use (1.8), (3.17) and (4.4) to express the moment
integral (1.9) in the hypergeometric form

( 1
2)n

(1)n
3F2

[−n, 1
4,

3
4;

1
1, 1;

]
=
∫ 1

0
x2n

{
[0( 1

4)]
4

2π4
(1− x2)−1/4

[
2F1

(
1

8
,

1

8
; 3

4
; 1− x2

)]2

− 16

[0( 1
4)]

4
x2(1− x2)1/4

[
2F1

(
7

8
,

7

8
; 5

4
; 1− x2

)]2}
dx. (5.1)

This result has been checked by evaluating the integral numerically for various values of
n = 0, 1, 2, . . ..
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We also note that it is possible to derive a series representation for the integral (1.1) by
substituting (3.17) into (1.4) and integrating term by term. It is found that

I (t) = ln t − 1

2

∞∑
n=1

1

n

(
1
2

)
n

(1)n
3F2

[−n, 1
4,

3
4;

1
1, 1;

](
2

t

)2n

, (5.2)

where|t | > 2. Whent = 2 we can also use (5.2) and (1.2) to obtain the summation formula

∞∑
n=1

1

n

(
1
2

)
n

(1)n
3F2

[−n, 1
4,

3
4;

1
1, 1;

]
= 8

(
ln 2− 2

π
G

)
. (5.3)
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Appendix A.

In this appendix we give an alternative procedure for evaluating the contour integral

Qj = (−4)j

2π i

∫
C1

(1+ z)j
z1+2j 2F1

[
1

2
,

1

2
; 1;−z(2+ z)

]
dz. (A.1)

We begin by applying the inverse Landen transformation

2F1

[
1

2
,

1

2
; 1;−z(2+ z)

]
= 2

(2+ z) 2F1

[
1

2
,

1

2
; 1; z2

(2+ z)2
]

(A.2)

and the standard integral representation

2F1

(
1

2
,

1

2
; 1; k2

)
= 1

π

∫ π

0

1√
1− k2 sin2 θ

dθ (A.3)

to the integrand in (A.1). Hence we obtain

Qj = (−4)j

π

∫ π

0
dθ

1

2π i

∫
C1

2(1+ z)j
z1+2j
√

4+ 4z+ z2 cos2 θ
dz. (A.4)

Next we define an algebraic transformation functiony = y(θ, z) which satisfies the
quadratic equation

A(θ)y2+ B(θ, z)y + C(θ) = 0, (A.5)

where

A(θ) = (1− cosθ)2, (A.6)

C(θ) = (1+ cosθ)2, (A.7)

B(θ, z) = A(θ)+ C(θ)+ 16[(1+ z)/z2]. (A.8)

The functiony(θ, z) clearly has two branches which are given by

y± = y±(θ, z) = 1

2A(θ)

[
−B(θ, z)± 4

z2
(2+ z)

√
4+ 4z+ z2 cos2 θ

]
. (A.9)

It follows from (A.9) that

A(θ)y± − C(θ)
y±
= ± 4

z2
(2+ z)

√
4+ 4z+ z2 cos2 θ. (A.10)
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We also obtain the further relation

−16

z2
(1+ z) =

(
1+ 1

y±

) [
A(θ)y± + C(θ)

]
(A.11)

from (A.5). If equation (A.11) is differentiated with respect toz it is found that

16

z3
(2+ z) = 1

y±

dy±
dz

[
A(θ)y± − C(θ)

y±

]
. (A.12)

We can now use the single-valued functiony+(θ, z) and equations (A.10)–(A.12) to
change the contour integration variable in (A.4) fromz to y+. This procedure yields

Qj = 1

π

∫ π

0
dθ

1

4π i

∫
C2

1

y+

(
1+ 1

y+

)j
[sin4(θ/2)y+ + cos4(θ/2)]j dy+, (A.13)

where the contourC2 encircles the origin with a winding number+2. The application of
the residue theorem to the contour integral in (A.13) leads to the formula

Qj =
j∑

m=0

(
j

m

)2 2

π

∫ π/2

0
sin4m ϕ cos4j−4m ϕ dϕ. (A.14)

After integrating over the angleϕ we find that

Qj = 1

(2j)!

j∑
m=0

(
j

m

)2(1

2

)
2m

(
1

2

)
2j−2m

. (A.15)

Finally, we carry out various manipulations of the Pochhammer symbols in order to express
(A.15) in the hypergeometric form

Qj =
( 1

4)j (
3
4)j

( 1
2)j (1)j

4F3

[ −j, −j, 1
4,

3
4;

1
−j + 1

4, −j + 3
4, 1;

]
. (A.16)

This result is in agreement with the earlier calculations given in section 2. The important
feature of this alternative approach is that it doesnot use the hypergeometric identity (2.24).
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Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1953Higher Transcendental Functionsvol 1 (New York:

McGraw–Hill)
Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products(New York: Academic)
Ince E L 1956Ordinary Differential Equations(New York: Dover)
Joyce G S 1971J. Math. Phys.12 1390–414
Joyce G S 1994Proc. R. Soc.A 445 463–77
Katsura S, Morita T, Inawashiro S, Horiguchi T and Abe Y 1971J. Math. Phys.12 892–5
Prudnikov A P, Brychkov Yu A and Marichev O I 1990Integral and Seriesvol 3 (New York: Gordon and Breach)

p 497, equation (10)
Shohat J A and Tamarkin J D 1943 The problem of momentsMathematical Surveysno 1 (Providence, RI: American

Mathematical Society)
Slater L J 1966Generalized Hypergeometric Functions. (Cambridge: Cambridge University Press)
Watson G N 1939Q. J. Math. Oxford10 266–76


